Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
PLoS Pathog ; 17(10): e1009742, 2021 10.
Article in English | MEDLINE | ID: covidwho-1456098

ABSTRACT

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage-HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Regeneration/immunology , SARS-CoV-2/immunology , Adult , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , COVID-19/pathology , Dendritic Cells/pathology , Female , Humans , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Programmed Cell Death 1 Receptor/immunology
2.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: covidwho-1269823

ABSTRACT

T cells are involved in control of coronavirus disease 2019 (COVID-19), but limited knowledge is available on the relationship between antigen-specific T cell response and disease severity. Here, we used flow cytometry to assess the magnitude, function, and phenotype of SARS coronavirus 2-specific (SARS-CoV-2-specific) CD4+ T cells in 95 hospitalized COVID-19 patients, 38 of them being HIV-1 and/or tuberculosis (TB) coinfected, and 38 non-COVID-19 patients. We showed that SARS-CoV-2-specific CD4+ T cell attributes, rather than magnitude, were associated with disease severity, with severe disease being characterized by poor polyfunctional potential, reduced proliferation capacity, and enhanced HLA-DR expression. Moreover, HIV-1 and TB coinfection skewed the SARS-CoV-2 T cell response. HIV-1-mediated CD4+ T cell depletion associated with suboptimal T cell and humoral immune responses to SARS-CoV-2, and a decrease in the polyfunctional capacity of SARS-CoV-2-specific CD4+ T cells was observed in COVID-19 patients with active TB. Our results also revealed that COVID-19 patients displayed reduced frequency of Mycobacterium tuberculosis-specific CD4+ T cells, with possible implications for TB disease progression. These results corroborate the important role of SARS-CoV-2-specific T cells in COVID-19 pathogenesis and support the concept of altered T cell functions in patients with severe disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coinfection/immunology , HIV-1/immunology , Mycobacterium tuberculosis/immunology , SARS-CoV-2/immunology , Tuberculosis/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/pathology , COVID-19/pathology , Coinfection/pathology , Female , Humans , Male , Middle Aged , Severity of Illness Index , Tuberculosis/pathology
3.
4.
Front Immunol ; 12: 627568, 2021.
Article in English | MEDLINE | ID: covidwho-1231335

ABSTRACT

The beta-coronavirus SARS-CoV-2 induces severe disease (COVID-19) mainly in elderly persons with risk factors, whereas the majority of patients experience a mild course of infection. As the circulating common cold coronaviruses OC43 and HKU1 share some homologous sequences with SARS-CoV-2, beta-coronavirus cross-reactive T-cell responses could influence the susceptibility to SARS-CoV-2 infection and the course of COVID-19. To investigate the role of beta-coronavirus cross-reactive T-cells, we analyzed the T-cell response against a 15 amino acid long peptide (SCoV-DP15: DLSPRWYFYYLGTGP) from the SARS-CoV-2 nucleoprotein sequence with a high homology to the corresponding sequence (QLLPRWYFYYLGTGP) in OC43 and HKU1. SCoV-DP15-specific T-cells were detected in 4 out of 23 (17.4%) SARS-CoV-2-seronegative healthy donors. As HIV-1 infection is a potential risk factor for COVID-19, we also studied a cohort of HIV-1-infected patients on antiretroviral therapy. 44 out of these 116 HIV-1-infected patients (37.9%) showed a specific recognition of the SCoV-DP15 peptide or of shorter peptides within SCoV-DP15 by CD4+ T-cells and/or by CD8+ T-cells. We could define several new cross-reactive HLA-I-restricted epitopes in the SARS-CoV-2 nucleoprotein such as SPRWYFYYL (HLA-B*07, HLA-B*35), DLSPRWYFYY (HLA-A*02), LSPRWYFYY (HLA-A*29), WYFYYLGTGP and WYFYYLGT. Epitope specific CD8+ T-cell lines recognized corresponding epitopes within OC43 and HKU1 to a similar degree or even at lower peptide concentrations suggesting that they were induced by infection with OC43 or HKU1. Our results confirm that SARS-CoV-2-seronegative subjects can target SARS-CoV-2 not only by beta-coronavirus cross-reactive CD4+ T-cells but also by cross-reactive CD8+ cytotoxic T-cells (CTL). The delineation of cross-reactive T-cell epitopes contributes to an efficient epitope-specific immunomonitoring of SARS-CoV-2-specific T-cells. Further prospective studies are needed to prove a protective role of cross-reactive T-cells and their restricting HLA alleles for control of SARS-CoV-2 infection. The frequent observation of SARS-CoV-2-reactive T-cells in HIV-1-infected subjects could be a reason that treated HIV-1 infection does not seem to be a strong risk factor for the development of severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Common Cold/immunology , Epitopes, T-Lymphocyte/immunology , Nucleoproteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/pathology , COVID-19/genetics , COVID-19/pathology , Cell Line , Common Cold/genetics , Common Cold/pathology , Cross Reactions , Epitopes, T-Lymphocyte/genetics , Female , Humans , Male , Middle Aged , Nucleoproteins/genetics , SARS-CoV-2/genetics , T-Lymphocytes, Cytotoxic/pathology
5.
Eur J Immunol ; 51(6): 1449-1460, 2021 06.
Article in English | MEDLINE | ID: covidwho-1159935

ABSTRACT

The pathogenesis of autoimmune complications triggered by SARS-CoV2 has not been completely elucidated. Here, we performed an analysis of the cellular immune status, cell ratios, and monocyte populations of patients with COVID-19 treated in the intensive care unit (ICU) (cohort 1, N = 23) and normal care unit (NCU) (cohort 2, n = 10) compared with control groups: patients treated in ICU for noninfectious reasons (cohort 3, n = 30) and patients treated in NCU for infections other than COVID-19 (cohort 4, n = 21). Patients in cohort 1 presented significant differences in comparison with the other cohorts, including reduced frequencies of lymphocytes, reduced CD8+T-cell count, reduced percentage of activated and intermediate monocytes and an increased B/T8 cell ratio. Over time, patients in cohort 1 who died presented with lower counts of B, T, CD4+ T, CD8+ T-lymphocytes, NK cells, and activated monocytes. The B/T8 ratio was significantly lower in the group of survivors. In cohort 1, significantly higher levels of IgG1 and IgG3 were found, whereas cohort 3 presented higher levels of IgG3 compared to controls. Among many immune changes, an elevated B/T8-cell ratio and a reduced rate of activated monocytes were mainly observed in patients with severe COVID-19. Both parameters were associated with death in cohort 1.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Viral/immunology , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Immunoglobulin G/immunology , Lymphocyte Count , Male , Middle Aged , Monocytes/pathology , Prospective Studies , Severity of Illness Index
6.
Front Endocrinol (Lausanne) ; 12: 596518, 2021.
Article in English | MEDLINE | ID: covidwho-1156116

ABSTRACT

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04365634. Context: Diabetes mellitus was associated with increased severity and mortality of disease in COVID-19 pneumonia. So far the effect of type 2 diabetes (T2DM) or hyperglycemia on the immune system among COVID-19 disease has remained unclear. Objective: We aim to explore the clinical and immunological features of type 2 diabetes mellitus (T2DM) among COVID-19 patients. Design and Methods: In this retrospective study, the clinical and immunological characteristics of 306 hospitalized confirmed COVID-19 patients (including 129 diabetic and 177 non-diabetic patients) were analyzed. The serum concentrations of laboratory parameters including cytokines and numbers of immune cells were measured and compared between diabetic and non-diabetic groups. Results: Compared with non-diabetic group, diabetic cases more frequently had lymphopenia and hyperglycemia, with higher levels of urea nitrogen, myoglobin, D-dimer and ferritin. Diabetic cases indicated the obviously elevated mortality and the higher levels of cytokines IL-2R, IL-6, IL-8, IL-10, and TNF-α, as well as the distinctly reduced Th1/Th2 cytokines ratios compared with non-diabetic cases. The longitudinal assays showed that compared to that at week 1, the levels of IL-6 and IL-8 were significantly elevated at week 2 after admission in non-survivors of diabetic cases, whereas there were greatly reductions from week 1 to week 2 in survivors of diabetic cases. Compared with survival diabetic patients, non-survival diabetic cases displayed distinct higher serum concentrations of IL-2R, IL-6, IL-8, IL-10, TNF-α, and lower Th1/Th2 cytokines ratios at week 2. Samples from a subset of participants were evaluated by flow cytometry for the immune cells. The counts of peripheral total T lymphocytes, CD4+ T cells, CD8+ T cells and NK cells were markedly lower in diabetic cases than in non-diabetic cases. The non-survivors showed the markedly declined counts of CD8+ T cells and NK cells than survivors. Conclusion: The elevated cytokines, imbalance of Th1/Th2 cytokines ratios and reduced of peripheral numbers of CD8+ T cells and NK cells might contribute to the pathogenic mechanisms of high mortality of COVID-19 patients with T2DM.


Subject(s)
COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , COVID-19/blood , COVID-19/complications , COVID-19/mortality , China/epidemiology , Cytokines/analysis , Cytokines/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/mortality , Female , Humans , Hyperglycemia/blood , Hyperglycemia/complications , Hyperglycemia/immunology , Hyperglycemia/mortality , Immune System/metabolism , Immune System/pathology , Killer Cells, Natural/pathology , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/complications , Lymphopenia/immunology , Lymphopenia/mortality , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Th1 Cells/pathology , Th2 Cells/pathology
7.
Front Immunol ; 11: 600405, 2020.
Article in English | MEDLINE | ID: covidwho-1013339

ABSTRACT

Aberrant T cell differentiation and lymphopenia are hallmarks of severe COVID-19 disease. Since T cells must race to cull infected cells, they are quick to differentiate and achieve cytotoxic function. With this responsiveness, comes hastened apoptosis, due to a coupled mechanism of death and differentiation in both CD4+ and CD8+ lymphocytes via CD95 (Fas) and serine-threonine kinase (Akt). T cell lymphopenia in severe cases may represent cell death or peripheral migration. These facets depict SARS-Cov-2 as a lympho-manipulative pathogen; it distorts T cell function, numbers, and death, and creates a dysfunctional immune response. Whether preservation of T cells, prevention of their aberrant differentiation, and expansion of their population may alter disease course is unknown. Its investigation requires experimental interrogation of the linked differentiation and death pathway by agents known to uncouple T cell proliferation and differentiation in both CD4+ and CD8+ T cells.


Subject(s)
Apoptosis/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cell Differentiation/immunology , Proto-Oncogene Proteins c-akt/immunology , SARS-CoV-2/immunology , fas Receptor/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Humans
8.
Clin Immunol ; 218: 108516, 2020 09.
Article in English | MEDLINE | ID: covidwho-973956

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is posing a huge threat to human health worldwide. We aim to investigate the immune status of CD8+ T and NK cells in COVID-19 patients. METHODS: The count and immune status of lymphocytes were detected by flow cytometry in 32 COVID-19 patients and 18 healthy individuals. RESULTS: As the disease progression in COVID-19 patients, CD8+ T and NK cells were significantly decreased in absolute number but highly activated. After patients' condition improved, the count and immune status of CD8+ T and NK cells restored to some extent. GrA+CD8+ T and perforin+ NK cells had good sensitivity and specificity for assisting diagnosis of COVID-19. CONCLUSIONS: As the disease progression, the declined lymphocytes in COVID-19 patients might lead to compensatory activation of CD8+ T and NK cells. GrA+CD8+ T and perforin+ NK cells might be used as meaningful indicators for assisting diagnosis of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/diagnosis , Granzymes/genetics , Killer Cells, Natural/immunology , Perforin/genetics , Pneumonia, Viral/diagnosis , T-Lymphocytes, Cytotoxic/immunology , Aged , Aged, 80 and over , Betacoronavirus/immunology , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , COVID-19 , COVID-19 Testing , Case-Control Studies , China , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Progression , Female , Gene Expression , Granzymes/blood , Granzymes/immunology , Humans , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Pandemics , Perforin/blood , Perforin/immunology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Prognosis , ROC Curve , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Cytotoxic/virology
9.
Viruses ; 12(11)2020 11 09.
Article in English | MEDLINE | ID: covidwho-918256

ABSTRACT

BACKGROUND: COVID-19 pathophysiology and the predictive factors involved are not fully understood, but lymphocytes dysregulation appears to play a role. This paper aims to evaluate lymphocyte subsets in the pathophysiology of COVID-19 and as predictive factors for severe disease. PATIENT AND METHODS: A prospective cohort study of patients with SARS-CoV-2 bilateral pneumonia recruited at hospital admission. Demographics, medical history, and data regarding SARS-CoV-2 infection were recorded. Patients systematically underwent complete laboratory tests, including parameters related to COVID-19 as well as lymphocyte subsets study at the time of admission. Severe disease criteria were established at admission, and patients were classified on remote follow-up according to disease evolution. Linear regression models were used to assess associations with disease evolution, and Receiver Operating Characteristic (ROC) and the corresponding Area Under the Curve (AUC) were used to evaluate predictive values. RESULTS: Patients with critical COVID-19 showed a decrease in CD3+CD4+ T cells count compared to non-critical (278 (485 IQR) vs. 545 (322 IQR)), a decrease in median CD4+/CD8+ ratio (1.7, (1.7 IQR) vs. 3.1 (2.4 IQR)), and a decrease in median CD4+MFI (21,820 (4491 IQR) vs. 26,259 (3256 IQR)), which persisted after adjustment. CD3+CD8+ T cells count had a high correlation with time to hospital discharge (PC = -0.700 (-0.931, -0.066)). ROC curves for predictive value showed lymphocyte subsets achieving the best performances, specifically CD3+CD4+ T cells (AUC = 0.756), CD4+/CD8+ ratio (AUC = 0.767), and CD4+MFI (AUC = 0.848). CONCLUSIONS: A predictive value and treatment considerations for lymphocyte subsets are suggested, especially for CD3CD4+ T cells. Lymphocyte subsets determination at hospital admission is recommended.


Subject(s)
CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , COVID-19/diagnosis , Lymphocyte Subsets/pathology , SARS-CoV-2/pathogenicity , Aged , Area Under Curve , Biomarkers/analysis , CD4-CD8 Ratio/statistics & numerical data , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Disease Progression , Female , Humans , Lung , Lymphocyte Count , Lymphocyte Subsets/immunology , Lymphocyte Subsets/virology , Male , Middle Aged , Patient Discharge/statistics & numerical data , Prognosis , Prospective Studies , ROC Curve , SARS-CoV-2/immunology , Severity of Illness Index
10.
Eur J Immunol ; 50(12): 1998-2012, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-871354

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. Understanding the immune response that provides specific immunity but may also lead to immunopathology is crucial for the design of potential preventive and therapeutic strategies. Here, we characterized and quantified SARS-CoV-2-specific immune responses in patients with different clinical courses. Compared to individuals with a mild clinical presentation, CD4+ T-cell responses were qualitatively impaired in critically ill patients. Strikingly, however, in these patients the specific IgG antibody response was remarkably strong. Furthermore, in these critically ill patients, a massive influx of circulating T cells into the lungs was observed, overwhelming the local T-cell compartment, and indicative of vascular leakage. The observed disparate T- and B-cell responses could be indicative of a deregulated immune response in critically ill COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Aged , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Male , Middle Aged , Severity of Illness Index
11.
PLoS One ; 15(9): e0239532, 2020.
Article in English | MEDLINE | ID: covidwho-798278

ABSTRACT

To investigate the clinical value of changes in the subtypes of peripheral blood lymphocytes and levels of inflammatory cytokines in patients with COVID-19, the total numbers of lymphocytes and CD4+ lymphocytes and the ratio of CD4+/CD8+ lymphocytes were calculated and observed in different groups of patients with COVID-19. The results show that the lymphocytopenia in patients with COVID-19 was mainly manifested by decreases in the CD4+ T lymphocyte number and the CD4+/CD8+ ratio. The decreased number of CD4+ T lymphocytes and the elevated levels of TNF-α and IL-6 were correlated with the severity of COVID-19 disease.


Subject(s)
CD4-Positive T-Lymphocytes/pathology , Coronavirus Infections/blood , Coronavirus Infections/immunology , Cytokines/blood , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Betacoronavirus , CD4 Lymphocyte Count , CD4-CD8 Ratio , COVID-19 , Child , Coronavirus Infections/diagnosis , Female , Humans , Interleukin-6/blood , Lymphopenia/blood , Lymphopenia/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood
12.
mBio ; 11(5)2020 09 18.
Article in English | MEDLINE | ID: covidwho-781095

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces a T cell response that most likely contributes to virus control in COVID-19 patients but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients. Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B as well as perforin within different effector CD8+ T cell subsets. PD-1-expressing CD8+ T cells also produced cytotoxic molecules during acute infection, indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years, the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2. Our data provide valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development.IMPORTANCE Cytotoxic T cells are responsible for the elimination of infected cells and are key players in the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group than in younger patients.


Subject(s)
CD8-Positive T-Lymphocytes/pathology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Cytotoxic/pathology , Aged, 80 and over , Antigens, CD/metabolism , Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Cytotoxins/metabolism , Female , Humans , Immunity, Cellular , Male , Middle Aged , Pandemics , SARS-CoV-2 , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Cytotoxic/immunology
13.
Clin Immunol ; 220: 108591, 2020 11.
Article in English | MEDLINE | ID: covidwho-753773

ABSTRACT

Most severe cases with COVID-19, especially those with pulmonary failure, are not a consequence of viral burden and/or failure of the 'adaptive' immune response to subdue the pathogen by utilizing an adequate 'adaptive' immune defense. Rather it is a consequence of immunopathology, resulting from imbalanced innate immune response, which may not be linked to pathogen burden at all. In fact, it might be described as an autoinflammatory disease. The Kawasaki-like disease seen in children with SARS-CoV-2 exposure might be another example of similar mechanism.


Subject(s)
Autoimmunity/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Host-Pathogen Interactions/immunology , Pneumonia, Viral/immunology , Respiratory Insufficiency/immunology , Acute Disease , Adaptive Immunity , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/physiopathology , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate , Lymphocyte Activation , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/physiopathology , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/physiopathology , Respiratory Insufficiency/genetics , Respiratory Insufficiency/physiopathology , SARS-CoV-2 , Severity of Illness Index
14.
Immunity ; 53(4): 864-877.e5, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-693493

ABSTRACT

The SARS-CoV-2 pandemic has resulted in millions of infections, yet the role of host immune responses in early COVID-19 pathogenesis remains unclear. By investigating 17 acute and 24 convalescent patients, we found that acute SARS-CoV-2 infection resulted in broad immune cell reduction including T, natural killer, monocyte, and dendritic cells (DCs). DCs were significantly reduced with functional impairment, and ratios of conventional DCs to plasmacytoid DCs were increased among acute severe patients. Besides lymphocytopenia, although neutralizing antibodies were rapidly and abundantly generated in patients, there were delayed receptor binding domain (RBD)- and nucleocapsid protein (NP)-specific T cell responses during the first 3 weeks after symptoms onset. Moreover, acute RBD- and NP-specific T cell responses included relatively more CD4 T cells than CD8 T cells. Our findings provided evidence that impaired DCs, together with timely inverted strong antibody but weak CD8 T cell responses, could contribute to acute COVID-19 pathogenesis and have implications for vaccine development.


Subject(s)
Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Dendritic Cells/immunology , Diabetes Mellitus/immunology , Hypertension/immunology , Pneumonia, Viral/immunology , Adult , Aged , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Convalescence , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Dendritic Cells/pathology , Dendritic Cells/virology , Diabetes Complications , Diabetes Mellitus/diagnosis , Diabetes Mellitus/virology , Disease Progression , Female , Humans , Hypertension/complications , Hypertension/diagnosis , Hypertension/virology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Monocytes/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
15.
Nat Commun ; 11(1): 3410, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-635899

ABSTRACT

COVID-19 is associated with 5.1% mortality. Although the virological, epidemiological, clinical, and management outcome features of COVID-19 patients have been defined rapidly, the inflammatory and immune profiles require definition as they influence pathogenesis and clinical expression of COVID-19. Here we show lymphopenia, selective loss of CD4+ T cells, CD8+ T cells and NK cells, excessive T-cell activation and high expression of T-cell inhibitory molecules are more prominent in severe cases than in those with mild disease. CD8+ T cells in patients with severe disease express high levels of cytotoxic molecules. Histochemical studies of lung tissue from one fatality show sub-anatomical distributions of SARS-CoV-2 RNA and massive infiltration of T cells and macrophages. Thus, aberrant activation and dysregulation of CD8+ T cells occur in patients with severe COVID-19 disease, an effect that might be for pathogenesis of SARS-CoV-2 infection and indicate that immune-based targets for therapeutic interventions constitute a promising treatment for severe COVID-19 patients.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Chemotaxis, Leukocyte , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/virology , Cytokines/blood , Female , Humans , Inflammation , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukocyte Count , Lung/immunology , Lung/virology , Lymphocyte Activation , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , SARS-CoV-2
16.
Nat Commun ; 11(1): 3434, 2020 07 06.
Article in English | MEDLINE | ID: covidwho-631255

ABSTRACT

The immune system of patients infected by SARS-CoV-2 is severely impaired. Detailed investigation of T cells and cytokine production in patients affected by COVID-19 pneumonia are urgently required. Here we show that, compared with healthy controls, COVID-19 patients' T cell compartment displays several alterations involving naïve, central memory, effector memory and terminally differentiated cells, as well as regulatory T cells and PD1+CD57+ exhausted T cells. Significant alterations exist also in several lineage-specifying transcription factors and chemokine receptors. Terminally differentiated T cells from patients proliferate less than those from healthy controls, whereas their mitochondria functionality is similar in CD4+ T cells from both groups. Patients display significant increases of proinflammatory or anti-inflammatory cytokines, including T helper type-1 and type-2 cytokines, chemokines and galectins; their lymphocytes produce more tumor necrosis factor (TNF), interferon-γ, interleukin (IL)-2 and IL-17, with the last observation implying that blocking IL-17 could provide a novel therapeutic strategy for COVID-19.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Cellular Senescence , Coronavirus Infections/blood , Coronavirus Infections/pathology , Cytokine Release Syndrome , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Immunologic Memory , Italy/epidemiology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , SARS-CoV-2 , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
17.
Cell Metab ; 32(2): 188-202.e5, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612608

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented threat to global public health. Herein, we utilized a combination of targeted and untargeted tandem mass spectrometry to analyze the plasma lipidome and metabolome in mild, moderate, and severe COVID-19 patients and healthy controls. A panel of 10 plasma metabolites effectively distinguished COVID-19 patients from healthy controls (AUC = 0.975). Plasma lipidome of COVID-19 resembled that of monosialodihexosyl ganglioside (GM3)-enriched exosomes, with enhanced levels of sphingomyelins (SMs) and GM3s, and reduced diacylglycerols (DAGs). Systems evaluation of metabolic dysregulation in COVID-19 was performed using multiscale embedded differential correlation network analyses. Using exosomes isolated from the same cohort, we demonstrated that exosomes of COVID-19 patients with elevating disease severity were increasingly enriched in GM3s. Our work suggests that GM3-enriched exosomes may partake in pathological processes related to COVID-19 pathogenesis and presents the largest repository on the plasma lipidome and metabolome distinct to COVID-19.


Subject(s)
Coronavirus Infections/blood , Coronavirus Infections/pathology , Exosomes/metabolism , G(M3) Ganglioside/blood , Gangliosides/blood , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Adult , Aged , Betacoronavirus , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , COVID-19 , Diglycerides/blood , Female , Humans , Male , Metabolome/physiology , Metabolomics/methods , Middle Aged , Pandemics , SARS-CoV-2 , Sphingomyelins/blood , Tandem Mass Spectrometry , Young Adult
18.
Pediatr Infect Dis J ; 39(7): e87-e90, 2020 07.
Article in English | MEDLINE | ID: covidwho-590916

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) is becoming a global threat. However, our understanding of the clinical characteristics and treatment of critically ill pediatric patients and their ability of transmitting the coronavirus that causes COVID-19 still remains inadequate because only a handful pediatric cases of COVID-19 have been reported. METHODS: Epidemiology, clinical characteristics, treatment, laboratory data and follow-up information and the treatment of critically ill infant were recorded. RESULTS: The infant had life-threatening clinical features including high fever, septic shock, recurrent apnea, petechiae and acute kidney injury and persistent declined CD3+, CD4+ and CD8+ T cells. The duration of nasopharyngeal virus shedding lasted for 49 days even with the administration of lopinavir/ritonavir for 8 days. The CD3+, CD4+ and CD8+ T cells was partially recovered 68 days post onset of the disease. Accumulating of effector memory CD4+ T cells (CD4+TEM) was observed among T-cell compartment. The nucleic acid tests and serum antibody for the severe acute respiratory syndrome coronavirus 2 of the infant's mother who kept intimate contact with the infant were negative despite no strict personal protection. CONCLUSIONS: The persistent reduction of CD4+ and CD8+ T cells was the typical feature of critically ill infant with COVID-19. CD4+ and CD8+ T cells might play a key role in aggravating COVID-19 and predicts a more critical course in children. The prolonged nasopharyngeal virus shedding was related with the severity of respiratory injury. The transmission of SARS-CoV-2 from infant (even very critical cases) to adult might be unlikely.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Betacoronavirus/isolation & purification , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus Infections/virology , Critical Illness , Humans , Infant , Lopinavir/therapeutic use , Lymphocyte Count , Male , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Ritonavir/therapeutic use , SARS-CoV-2 , Virus Shedding/immunology
19.
Pediatr Infect Dis J ; 39(7): e100-e103, 2020 07.
Article in English | MEDLINE | ID: covidwho-590533

ABSTRACT

BACKGROUND: To describe the characteristics of clinical manifestations of children with 2019 novel coronavirus (2019-nCoV) infection in Chongqing. METHODS: All 25 children with laboratory-confirmed 2019-nCoV infection by real-time reverse transcription-PCR (RNA-PCR) were admitted from the 4 designated treatment hospitals of 2019-nCoV in Chongqing from January 19 to March 12, 2020. Clinical data and epidemiologic history of these patients were retrospectively collected and analyzed. RESULTS: The diagnosis was confirmed through RNA-PCR testing. Among the 25 cases, 14 were males and 11 were females. The median age was 11.0 (6.3-14.5) years (range 0.6-17.0 years). All children were related to a family cluster outbreak, and 7 children (28%) with a travel or residence history in Hubei Province. These patients could be categorized into different clinical types, including 8 (32%) asymptomatic, 4 (16%) very mild cases and 13 (52%) common cases. No severe or critical cases were identified. The most common symptoms were cough (13 cases, 52%) and fever (6 cases, 24%). The duration time of clinical symptoms was 13.0 (8.0-25.0) days. In the 25 cases, on admission, 21 cases (84%) had normal white blood cell counts, while only 2 cases (8%) more than 10 × 10/L and 2 cases (8%) less than 4 × 10/L, respectively; 22 cases(88%) had normal CD4+ T lymphocyte counts, while in the remaining 3 cases(8%) this increased mildly; 23 cases had normal CD8+ T lymphocyte counts, while in the remaining 2 cases (8%) CD8+ T lymphocyte counts were mildly increased as well. All Lymphocyte counts were normal. There were no statistical differences of lab results between the groups of asymptomatic cases, mild cases and common cases. There were only 13 cases with abnormal CT imaging, most of which were located in the subpleural area of the bottom of the lung. All patients were treated with interferon, 6 cases combined with Ribavirin, and 12 cases combined with lopinavir or ritonavir. The days from onset to RNA turning negative was 15.20 ± 6.54 days. There was no significant difference of RNA turning negative between the groups of interferon, interferon plus ribavirin and interferon plus lopinavir or ritonavir treatment. All the cases recovered and were discharged from hospital. CONCLUSIONS: The morbidity of 2019-nCoV infection in children is lower than in adults and the clinical manifestations and inflammatory biomarkers in children are nonspecific and milder than that in adults. RNA-PCR test is still the most reliable diagnostic method, especially for asymptomatic patients.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Adolescent , Age Factors , Antiviral Agents/therapeutic use , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Child , Child, Preschool , China/epidemiology , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Cough/virology , Female , Fever/virology , Humans , Infant , Lopinavir/therapeutic use , Lymphocyte Count , Male , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , Prognosis , Retrospective Studies , Ribavirin/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2 , Treatment Outcome
20.
Clin Immunol ; 217: 108486, 2020 08.
Article in English | MEDLINE | ID: covidwho-436697

ABSTRACT

The lymphopenia exhibited in patients with COVID-19 has been associated with a worse prognosis in the development of the disease. To understand the factors associated with a worse evolution of COVID-19, we analyzed comorbidities, indicators of inflammation such as CRP and the ratio of neutrophils/lymphocytes, as well as the count of blood cells with T-lymphocyte subtypes in 172 hospitalized patients with COVID-19 pneumonia. Patients were grouped according to their needs for mechanical ventilation (ICU care) or not. Within the comorbidities studied, obesity was the only associated with greater severity and ICU admission. Both the percentage and the absolute number of neutrophils were higher in patients needing ICU care than non-ICU patients, whereas absolute lymphocyte count, and especially the percentage of lymphocytes, presented a deep decline in critical patients. There was no difference between the two groups of patients for CD4 T-lymphocytes, neither in percentage of lymphocyte nor in absolute number, however for CD8 T-cells the differences were significant for both parameters which were in decline in ICU patients. There was a firm correlation between the highest values of inflammation indicators with the decrease in percentage of CD8 T-lymphocytes. This effect was not seen with CD4 cells. Obesity together with lymphopenia, especially whether preferentially affects to CD8 T- lymphocytes, are factors that can predict a poor prognosis in patients with COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , CD8-Positive T-Lymphocytes/pathology , Coronavirus Infections/immunology , Lymphopenia/immunology , Neutrophils/pathology , Obesity/immunology , Pneumonia, Viral/immunology , Aged , Aged, 80 and over , Betacoronavirus/immunology , Biomarkers/blood , C-Reactive Protein/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Case-Control Studies , Coronavirus Infections/complications , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Humans , Intensive Care Units , Lymphocyte Count , Lymphopenia/complications , Lymphopenia/mortality , Lymphopenia/therapy , Male , Middle Aged , Neutrophils/immunology , Neutrophils/virology , Obesity/complications , Obesity/mortality , Obesity/therapy , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Prognosis , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL